Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.114
Filtrar
1.
mBio ; 14(5): e0138523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37706879

RESUMO

Folic acid and its derivatives are required for the synthesis of purines, pyrimidines, and some amino acids. Antifolate antibiotics that target the folic acid metabolism pathway are commonly used for the treatment of listeriosis caused by the intracellular pathogen Listeria monocytogenes (Lm). In recent work in mBio, Feng et al. sought to understand the role of folic acid metabolism in Lm virulence (Y. Feng, S. Chang, D. A. Portnoy, 2023, mBio https://doi.org/10.1128/mbio.01074-23). The authors discovered that N-formylmethionine, an amino acid utilized by bacteria to initiate protein synthesis, is crucial for Lm intracellular growth and pathogenesis. Surprisingly, purines and thymidine were found to be dispensable for Lm infection. Together these results demonstrate that while Lm can obtain many essential nutrients from the host cytosol, including purines and most amino acids, it requires N-formylmethionine biosynthesis to properly regulate translation initiation during infection.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Aminoácidos/metabolismo , Ácido Fólico/metabolismo , Purinas
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(4): 289-294, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37087545

RESUMO

Objective To investigate the effect of long intergenic non-coding RNA COX2 (lincRNA-COX2) on apoptosis and polarization of Listeria monocytogenes (Lm)-infected RAW264.7 cells. Methods RAW264.7 cells were cultured and divided into control group (uninfected cells), Lm infection group, negative control of small interfering RNA (si-NC) group, si-NC and Lm infection group, small interfering RNA of lincRNA-COX2 (si-lincRNA-COX2) group, si-lincRNA-COX2 and Lm infection group. RAW264.7 cells were infected with MOI=10 Lm for 6 hours, and then the inhibition efficiency of siRNA transfection was detected by fluorescence microscope and quantitative real-time PCR (qRT-PCR). The expression levels of cleaved-caspase-3(c-caspase-3), caspase-3, B-cell lymphoma-2 (Bcl2), Bcl2 associated X protein (BAX), arginase 1 (Arg1), inducible nitric oxide synthase (iNOS) were detected by Western blot analysis. Results c-caspase-3/caspase-3, BAX/Bcl2 and iNOS were significantly up-regulated, while the level of Arg1 was down-regulated in Lm-infected RAW264.7 cells compared with control group. LincRNA-COX2 knockdown inhibited the increase of protein levels for BAX/Bcl2, c-caspase-3/caspase-3 and iNOS in Lm-infected RAW264.7 cells, while the level of Arg1 in Lm-infected RAW264.7 cells was up-regulated. Conclusion Knockdown of lincRNA-COX2 can inhibit cell apoptosis and suppress the macrophage polarization into M1 type in Lm-infected RAW264.7 cells.


Assuntos
Ciclo-Oxigenase 2 , Listeria monocytogenes , Macrófagos , RNA Longo não Codificante , Apoptose/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Macrófagos/metabolismo , Macrófagos/microbiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , Animais , Camundongos
3.
Can Vet J ; 64(4): 363-366, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37008639

RESUMO

Clinical disease caused by infection with Listeria monocytogenes is rare in adult horses, and there is a paucity of ante-mortem clinicopathologic changes for this species reported in the literature. Confirmatory diagnosis is difficult and often requires post-mortem sampling of the brainstem. This report details a case of meningoencephalitis caused by Listeria monocytogenes in an adult American quarter horse gelding presenting with central neurologic signs. Pre-mortem analysis of the cerebrospinal fluid revealed a mononuclear, primarily lymphocytic, pleocytosis, which is a reported finding in other species with listeriosis. Post-mortem histopathologic changes of the brainstem were characteristic of listeriosis, and infection was confirmed with immunohistochemical labeling and bacterial culture. Key clinical message: Listeriosis should be included as a differential diagnosis in neurologic horses with mononuclear pleocytosis identified on cerebrospinal fluid analysis.


Pléocytose mononucléaire et méningo-encéphalite causées par Listeria monocytogenes chez un cheval adulte. La maladie clinique causée par une infection à L. monocytogenes est rare chez les chevaux adultes, et il y a peu de changements clinico-pathologiques ante-mortem rapportés dans la littérature pour cette espèce. Le diagnostic de confirmation est difficile et nécessite souvent un prélèvement post-mortem du tronc cérébral. Ce rapport détaille un cas de méningo-encéphalite causée par L. monocytogenes chez un hongre quarter horse américain adulte présentant des signes neurologiques centraux. L'analyse pré-mortem du liquide céphalo-rachidien a révélé une pléocytose mononucléaire, principalement lymphocytaire, qui est une trouvaille rapportée chez d'autres espèces atteintes de listériose. Les modifications histopathologiques post-mortem du tronc cérébral étaient caractéristiques de la listériose et l'infection a été confirmée par un marquage immunohistochimique et une culture bactérienne.Message clinique clé :La listériose doit être incluse comme diagnostic différentiel chez les chevaux avec signes neurologiques présentant une pléocytose mononucléaire identifiée lors de l'analyse du liquide céphalo-rachidien.(Traduit par Dr Serge Messier).


Assuntos
Doenças dos Cavalos , Listeriose , Meningoencefalite , Animais , Masculino , Diagnóstico Diferencial , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/microbiologia , Cavalos , Leucocitose/diagnóstico , Leucocitose/veterinária , Listeria monocytogenes/patogenicidade , Listeriose/diagnóstico , Listeriose/veterinária , Meningoencefalite/diagnóstico , Meningoencefalite/microbiologia , Meningoencefalite/veterinária , Líquido Cefalorraquidiano/citologia
4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902108

RESUMO

We explored the antimicrobial activity of sertraline on Listeria monocytogenes and further investigated the effects of sertraline on biofilm formation and the virulence gene expression of L. monocytogenes. The minimum inhibitory concentration and minimum bactericidal concentration for sertraline against L. monocytogenes were in the range of 16-32 µg/mL and 64 µg/mL, respectively. Sertraline-dependent damage of the cell membrane and a decrease in intracellular ATP and pHin in L. monocytogenes were observed. In addition, sertraline reduced the biofilm formation efficiency of the L. monocytogenes strains. Importantly, low concentrations (0.1 µg/mL and 1 µg/mL) of sertraline significantly down-regulated the expression levels of various L. monocytogens virulence genes (prfA, actA, degU, flaA, sigB, ltrC and sufS). These results collectively suggest a role of sertraline for the control of L. monocytogenes in the food industry.


Assuntos
Anti-Infecciosos , Proteínas de Bactérias , Listeria monocytogenes , Sertralina , Fatores de Virulência , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Sertralina/farmacologia , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981867

RESUMO

Objective To investigate the effect of long intergenic non-coding RNA COX2 (lincRNA-COX2) on apoptosis and polarization of Listeria monocytogenes (Lm)-infected RAW264.7 cells. Methods RAW264.7 cells were cultured and divided into control group (uninfected cells), Lm infection group, negative control of small interfering RNA (si-NC) group, si-NC and Lm infection group, small interfering RNA of lincRNA-COX2 (si-lincRNA-COX2) group, si-lincRNA-COX2 and Lm infection group. RAW264.7 cells were infected with MOI=10 Lm for 6 hours, and then the inhibition efficiency of siRNA transfection was detected by fluorescence microscope and quantitative real-time PCR (qRT-PCR). The expression levels of cleaved-caspase-3(c-caspase-3), caspase-3, B-cell lymphoma-2 (Bcl2), Bcl2 associated X protein (BAX), arginase 1 (Arg1), inducible nitric oxide synthase (iNOS) were detected by Western blot analysis. Results c-caspase-3/caspase-3, BAX/Bcl2 and iNOS were significantly up-regulated, while the level of Arg1 was down-regulated in Lm-infected RAW264.7 cells compared with control group. LincRNA-COX2 knockdown inhibited the increase of protein levels for BAX/Bcl2, c-caspase-3/caspase-3 and iNOS in Lm-infected RAW264.7 cells, while the level of Arg1 in Lm-infected RAW264.7 cells was up-regulated. Conclusion Knockdown of lincRNA-COX2 can inhibit cell apoptosis and suppress the macrophage polarization into M1 type in Lm-infected RAW264.7 cells.


Assuntos
Animais , Camundongos , Apoptose/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Ciclo-Oxigenase 2/metabolismo , Listeria monocytogenes/patogenicidade , Macrófagos/microbiologia , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética
6.
PLoS One ; 17(9): e0274005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054213

RESUMO

Listeria monocytogenes is a ubiquitous opportunistic foodborne pathogen capable of survival in various adverse environmental conditions. Pathogenesis of L. monocytogenes is tightly controlled by a complex regulatory network of transcriptional regulators that are necessary for survival and adaptations to harsh environmental conditions both inside and outside host cells. Among these regulatory pathways are members of the DeoR-family transcriptional regulators that are known to play a regulatory role in sugar metabolism. In this study, we deciphered the role of FruR, a DeoR family protein, which is a fructose operon transcriptional repressor protein, in L. monocytogenes pathogenesis and growth. Following intravenous (IV) inoculation in mice, a mutant strain with deletion of fruR exhibited a significant reduction in bacterial burden in liver and spleen tissues compared to the parent strain. Further, the ΔfruR strain had a defect in cell-to-cell spread in L2 fibroblast monolayers. Constitutive activation of PrfA, a pleiotropic activator of L. monocytogenes virulence factors, did not restore virulence to the ΔfruR strain, suggesting that the attenuation was not a result of impaired PrfA activation. Transcriptome analysis revealed that FruR functions as a positive regulator for genes encoding enzymes involved in the pentose phosphate pathway (PPP) and as a repressor for genes encoding enzymes in the glycolysis pathway. These results suggested that FruR may function to facilitate NADPH regeneration, which is necessary for full protection from oxidative stress. Interestingly, deletion of fruR increased sensitivity of L. monocytogenes to H2O2, confirming a role for FruR in survival of L. monocytogenes during oxidative stress. Using anti-mouse neutrophil/monocyte monoclonal antibody RB6-8C5 (RB6) in an in vivo infection model, we found that FruR has a specific function in protecting L. monocytogenes from neutrophil/monocyte-mediated killing. Overall, this work clarifies the role of FruR in controlling L. monocytogenes carbon flow between glycolysis and PPP for NADPH homeostasis, which provides a new mechanism allowing metabolic adaptation of L. monocytogenes to oxidative stress.


Assuntos
Listeria monocytogenes , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Camundongos , Fatores de Terminação de Peptídeos/metabolismo , Regulon , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência
7.
Nature ; 603(7903): 900-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296858

RESUMO

Infections of the central nervous system are among the most serious infections1,2, but the mechanisms by which pathogens access the brain remain poorly understood. The model microorganism Listeria monocytogenes (Lm) is a major foodborne pathogen that causes neurolisteriosis, one of the deadliest infections of the central nervous system3,4. Although immunosuppression is a well-established host risk factor for neurolisteriosis3,5, little is known about the bacterial factors that underlie the neuroinvasion of Lm. Here we develop a clinically relevant experimental model of neurolisteriosis, using hypervirulent neuroinvasive strains6 inoculated in a humanized mouse model of infection7, and we show that the bacterial surface protein InlB protects infected monocytes from Fas-mediated cell death by CD8+ T cells in a manner that depends on c-Met, PI3 kinase and FLIP. This blockade of specific anti-Lm cellular immune killing lengthens the lifespan of infected monocytes, and thereby favours the transfer of Lm from infected monocytes to the brain. The intracellular niche that is created by InlB-mediated cell-autonomous immune resistance also promotes Lm faecal shedding, which accounts for the selection of InlB as a core virulence gene of Lm. We have uncovered a specific mechanism by which a bacterial pathogen confers an increased lifespan to the cells it infects by rendering them resistant to cell-mediated immunity. This promotes the persistence of Lm within the host, its dissemination to the central nervous system and its transmission.


Assuntos
Doenças do Sistema Nervoso Central , Listeria monocytogenes , Listeriose , Animais , Proteínas de Bactérias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doenças do Sistema Nervoso Central/microbiologia , Modelos Animais de Doenças , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Monócitos , Virulência
8.
Proc Natl Acad Sci U S A ; 119(13): e2122173119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316134

RESUMO

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.


Assuntos
Proteínas de Bactérias , Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo , Listeria monocytogenes , Proteínas de Membrana Transportadoras , Riboflavina , Proteínas de Bactérias/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Proteínas de Membrana Transportadoras/metabolismo , Riboflavina/metabolismo
9.
Cell Rep ; 38(8): 110414, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196496

RESUMO

Inflammasome activation exacerbates infectious disease caused by pathogens such as Listeria monocytogenes, Staphylococcus aureus, and severe acute respiratory syndrome coronavirus 2. Although these pathogens activate host inflammasomes to regulate pathogen expansion, the mechanisms by which pathogen toxins contribute to inflammasome activation remain poorly understood. Here we show that activation of inflammasomes by Listeria infection is promoted by amino acid residue T223 of listeriolysin O (LLO) independently of its pore-forming activity. LLO T223 is critical for phosphorylation of the inflammasome adaptor ASC at amino acid residue Y144 through Lyn-Syk signaling, which is essential for ASC oligomerization. Notably, a Listeria mutant expressing LLO T223A is impaired in inducing ASC phosphorylation and inflammasome activation. Furthermore, the virulence of LLO T223A mutant is markedly attenuated in vivo due to impaired ability to activate the inflammasome. Our results reveal a function of a pathogen toxin that exacerbates infection by promoting phosphorylation of ASC.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Listeria monocytogenes/patogenicidade , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Edição de Genes , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Interleucina-18/metabolismo , Listeria monocytogenes/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fosforilação , Quinase Syk/genética , Quinase Syk/metabolismo , Virulência , Quinases da Família src/genética , Quinases da Família src/metabolismo
10.
PLoS Pathog ; 18(1): e1010166, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007292

RESUMO

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


Assuntos
Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Macrófagos/microbiologia , Vacúolos/microbiologia , Virulência/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS Pathog ; 17(12): e1010173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929015

RESUMO

For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection.


Assuntos
Histonas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Sirtuína 3/metabolismo , Animais , Sobrevivência Celular/fisiologia , Humanos , Listeria monocytogenes/metabolismo
12.
Cell Rep ; 37(5): 109956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731605

RESUMO

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/sangue , Listeriose/imunologia , Listeriose/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Malária/sangue , Malária/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Parasitária , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagócitos/parasitologia , Plasmodium berghei/patogenicidade , Fatores de Tempo
13.
Nat Commun ; 12(1): 6826, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819495

RESUMO

Listeria genus comprises two pathogenic species, L. monocytogenes (Lm) and L. ivanovii, and non-pathogenic species. All can thrive as saprophytes, whereas only pathogenic species cause systemic infections. Identifying Listeria species' respective biotopes is critical to understand the ecological contribution of Listeria virulence. In order to investigate the prevalence and abundance of Listeria species in various sources, we retrieved and analyzed 16S rRNA datasets from MG-RAST metagenomic database. 26% of datasets contain Listeria sensu stricto sequences, and Lm is the most prevalent species, most abundant in soil and host-associated environments, including 5% of human stools. Lm is also detected in 10% of human stool samples from an independent cohort of 900 healthy asymptomatic donors. A specific microbiota signature is associated with Lm faecal carriage, both in humans and experimentally inoculated mice, in which it precedes Lm faecal carriage. These results indicate that Lm faecal carriage is common and depends on the gut microbiota, and suggest that Lm faecal carriage is a crucial yet overlooked consequence of its virulence.


Assuntos
Portador Sadio/epidemiologia , Microbioma Gastrointestinal/genética , Listeria monocytogenes/isolamento & purificação , Animais , Portador Sadio/diagnóstico , Portador Sadio/microbiologia , DNA Bacteriano/isolamento & purificação , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Masculino , Metagenômica/estatística & dados numéricos , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Virulência
14.
Int J Rheum Dis ; 24(11): 1427-1439, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34633142

RESUMO

AIM: To review the clinical features of systemic lupus erythematosus (SLE) complicated by central nervous system (CNS) infection due to Listeria monocytogenes. METHOD: A patient with SLE receiving high-dose glucocorticoids combined with cyclophosphamide who developed multiple brain abscesses due to Listeria infection is described. The case is compared with known cases in a literature review. RESULTS: A review of the literature showed that CNS infections are rare bacterial complications of SLE, but they can be a significant cause of mortality, especially those due to L. monocytogenes. The most significant risk factor for listerial meningitis is a prior history of receiving immunosuppressive therapy. At-risk patients should avoid unpasteurized milk and soft cheeses along with deli-style, ready-to-eat prepared meats, particularly poultry products. The case we report is the fifth SLE patient with multiple brain abscesses due to L. monocytogenes, and the first to be discharged with no sequelae. Timely and accurate identification and treatment of CNS infections and neuropsychiatric lupus are very important for favorable disease prognosis. CONCLUSION: Repeated blood culture is helpful for early diagnosis, and empirical anti-infective treatment that covers L. monocytogenes is recommended for SLE patients with risk factors when CNS infection occurs. A comprehensive assessment might be helpful to distinguish CNS infections from neuropsychiatric SLE. For severe infection, the dosage of steroids does not need to be reduced immediately but can be gradually adjusted based on the results of a comprehensive evaluation of the disease.


Assuntos
Abscesso Encefálico/microbiologia , Ciclofosfamida/efeitos adversos , Glucocorticoides/efeitos adversos , Imunossupressores/efeitos adversos , Listeria monocytogenes/patogenicidade , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Meningite por Listeria/microbiologia , Antibacterianos/uso terapêutico , Abscesso Encefálico/diagnóstico , Abscesso Encefálico/tratamento farmacológico , Abscesso Encefálico/imunologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Listeria monocytogenes/imunologia , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/imunologia , Meningite por Listeria/diagnóstico , Meningite por Listeria/tratamento farmacológico , Meningite por Listeria/imunologia , Pessoa de Meia-Idade , Fatores de Risco , Resultado do Tratamento
15.
PLoS Pathog ; 17(10): e1009881, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624065

RESUMO

Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a ß-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence.


Assuntos
Parede Celular/fisiologia , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Listeriose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Virulência
16.
Mol Microbiol ; 116(6): 1407-1419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704304

RESUMO

Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Proteínas de Bactérias/genética , Humanos , Listeria monocytogenes/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transcitose
17.
FEBS Open Bio ; 11(12): 3262-3275, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709730

RESUMO

Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/fisiologia , Animais , Clostridium perfringens/enzimologia , Clostridium perfringens/patogenicidade , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/patogenicidade , Fosfolipases , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Fosfolipases Tipo C/genética
18.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663978

RESUMO

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Hereditariedade , Imunidade Inata/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Células Mieloides/imunologia , Animais , Candida albicans/patogenicidade , Candidíase/genética , Candidíase/metabolismo , Candidíase/microbiologia , Células Cultivadas , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Listeriose/genética , Listeriose/metabolismo , Listeriose/microbiologia , Masculino , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Espermatozoides/imunologia , Espermatozoides/metabolismo , Transcrição Gênica
19.
Int Immunopharmacol ; 100: 108090, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507108

RESUMO

BACKGROUND: Immunomodulatory therapies are claimed to enhance antimicrobial immunity and counterbalance antimicrobial resistance mechanisms of pathogenic bacteria. PURPOSE: To investigate whether caffeine can be useful for control of inflammation derived from experimental systemic infection with Listeria monocytogenes. METHODS: Peritoneal macrophages (pMØ) from Swiss mice were cultured with caffeine in 96-well plates, and then infected with virulent L. monocytogenes 619. In another experiment, the pMØ were first infected with the bacterium and then treated with caffeine. Swiss mice were inoculated intraperitoneally with L. monocytogenes and then treated intravenously with caffeine (0.05; 0.5 or 5 mg/Kg). RESULTS: Caffeine did not exert direct antibacterial activity in vitro against L. monocytogenes. Macrophages exposed to caffeine before or after infection with L. monocytogenes had increased cell viability, although the intracellular bacterial loads were similar to the control groups. Caffeine treatments of Swiss mice reduced leukocyte infiltration into the peritoneal cavity after L. monocytogenes infection. However, the bacterial burden was reduced in the spleen and liver. The mRNA expressions of IL-1ß, IL-6 and the enzyme inducible nitric oxide synthase (iNOS) were reduced whereas IL-10 was increased. CONCLUSION: Caffeine has an anti-infectious potential and ameliorated infection-derived inflammation following experimental infection with L. monocytogenes.


Assuntos
Anti-Inflamatórios/farmacologia , Cafeína/farmacologia , Inflamação/tratamento farmacológico , Listeria monocytogenes/patogenicidade , Listeriose/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Cafeína/análogos & derivados , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Virulência
20.
Appl Environ Microbiol ; 87(23): e0141121, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550783

RESUMO

In spite of its relevance as a foodborne pathogen, we have limited knowledge about Listeria monocytogenes in the environment. L. monocytogenes outbreaks have been linked to fruits and vegetables; thus, a better understanding of the factors influencing its ability to colonize plants is important. We tested how environmental factors and other soil- and plant-associated bacteria influenced L. monocytogenes' ability to colonize plant roots using Arabidopsis thaliana seedlings in a hydroponic growth system. We determined that the successful root colonization of L. monocytogenes 10403S was modestly but significantly enhanced by the bacterium being pregrown at higher temperatures, and this effect was independent of the biofilm and virulence regulator PrfA. We tested 14 rhizosphere-derived bacteria for their impact on L. monocytogenes 10403S, identifying one that enhanced and 10 that inhibited the association of 10403S with plant roots. We also characterized the outcomes of these interactions under both coinoculation and invasion conditions. We characterized the physical requirements of five of these rhizobacteria to impact the association of L. monocytogenes 10403S with roots, visualizing one of these interactions by microscopy. Furthermore, we determined that two rhizobacteria (one an inhibitor, the other an enhancer of 10403S root association) were able to similarly impact 10 different L. monocytogenes strains, indicating that the effects of these rhizobacteria on L. monocytogenes are not strain specific. Taken together, our results advance our understanding of the parameters that affect L. monocytogenes plant root colonization, knowledge that may enable us to deter its association with and, thus, downstream contamination of, food crops. IMPORTANCE Listeria monocytogenes is ubiquitous in the environment, being found in or on soil, water, plants, and wildlife. However, little is known about the requirements for L. monocytogenes' existence in these settings. Recent L. monocytogenes outbreaks have been associated with contaminated produce; thus, we used a plant colonization model to investigate factors that alter L. monocytogenes' ability to colonize plant roots. We show that L. monocytogenes colonization of roots was enhanced when grown at higher temperatures prior to inoculation but did not require a known regulator of virulence and biofilm formation. Additionally, we identified several rhizobacteria that altered the ability of 11 different strains of L. monocytogenes to colonize plant roots. Understanding the factors that impact L. monocytogenes physiology and growth will be crucial for finding mechanisms (whether chemical or microbial) that enable its removal from plant surfaces to reduce L. monocytogenes contamination of produce and eliminate foodborne illness.


Assuntos
Arabidopsis , Listeria monocytogenes , Raízes de Plantas/microbiologia , Rhizobiaceae/fisiologia , Arabidopsis/microbiologia , Listeria monocytogenes/patogenicidade , Rizosfera , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...